Compile / build

From Things and Stuff Wiki
Jump to: navigation, search

Things and Stuff Wiki - An organically evolving personal wiki knowledge base with an on-the-fly taxonomy containing a patchwork of topic outlines, descriptions, notes and breadcrumbs, with links to sites, systems, software, manuals, organisations, people, articles, guides, slides, papers, books, comments, videos, screencasts, webcasts, scratchpads and more. Quality varies drastically. Use the Table of Contents menu to navigate long pages, use the header Small-ToC and Tiny-ToC links to reduce the menu size. Possibly not that mobile friendly atm. Feedback, general contacting me, and IRC idling in #tnswiki on Freenode (web chat). See About for login and other info. / et / em

Compile and link time

to resort


  • https://en.wikipedia.org/wiki/Preprocessor - a program that processes its input data to produce output that is used as input to another program. The output is said to be a preprocessed form of the input data, which is often used by some subsequent programs like compilers. The amount and kind of processing done depends on the nature of the preprocessor; some preprocessors are only capable of performing relatively simple textual substitutions and macro expansions, while others have the power of full-fledged programming languages.


Compiler


  • http://c2.com/cgi/wiki?TheKenThompsonHack - Ken's acceptance speech Reflections On Trusting Trust describes a hack (in every sense), the most subversive ever perpetrated, nothing less than the root password of all evil. Ken describes how he injected a virus into a compiler. Not only did his compiler know it was compiling the login function and inject a backdoor, but it also knew when it was compiling itself and injected the backdoor generator into the compiler it was creating. The source code for the compiler thereafter contains no evidence of either virus.



  • Compiler Explorer - Run compilers interactively from your web browser and interact with the assembly] - an interactive compiler. The left-hand pane shows editable C, C++, Rust, Go, D, Haskell, Swift and Pascal code. The right, the assembly output of having compiled the code with a given compiler and settings. Multiple compilers are supported, and the UI layout is configurable (thanks to GoldenLayout). There is also an ispc compiler ? for a C variant with extensions for SPMD.


  • https://en.wikipedia.org/wiki/Object_file - a file containing object code, meaning relocatable format machine code that is usually not directly executable. There are various formats for object files, and the same object code can be packaged in different object files. An object file also works like an Application Extension (.dll). In addition to the object code itself, object files may contain metadata used for linking or debugging, including: information to resolve symbolic cross-references between different modules, relocation information, stack unwinding information, comments, program symbols, debugging or profiling information.


Assembler

  • https://en.wikipedia.org/wiki/Assembler_(computing) - creates object code by translating combinations of mnemonics and syntax for operations and addressing modes into their numerical equivalents. This representation typically includes an operation code ("opcode") as well as other control bits. The assembler also calculates constant expressions and resolves symbolic names for memory locations and other entities. The use of symbolic references is a key feature of assemblers, saving tedious calculations and manual address updates after program modifications.




to sort

  • https://en.wikipedia.org/wiki/Compiler-compiler - or compiler generator is a programming tool that creates a parser, interpreter, or compiler from some form of formal description of a language and machine. The earliest and still most common form of compiler-compiler is a parser generator, whose input is a grammar (usually in BNF) of a programming language, and whose generated output is the source code of a parser often used as a component of a compiler.

The ideal compiler-compiler takes a description of a programming language and a target instruction set architecture, and automatically generates a usable compiler from them. In practice, the state of the art has yet to reach this degree of sophistication and most compiler generators are not capable of handling semantic or target architecture information.



  • https://en.wikipedia.org/wiki/Metacompiler - a software development tool used chiefly in the construction of compilers, translators, and interpreters for other programming languages. They are a subset of a specialized class of compiler writing tools called compiler-compilers that employ metaprogramming languages.


Linking


  • https://en.wikipedia.org/wiki/Relocation_(computing) - the process of assigning load addresses to various parts of a program and adjusting the code and data in the program to reflect the assigned addresses. A linker usually performs relocation in conjunction with symbol resolution, the process of searching files and libraries to replace symbolic references or names of libraries with actual usable addresses in memory before running a program. Relocation is typically done by the linker at link time, but it can also be done at run time by a relocating loader, or by the running program itself. Some architectures avoid relocation entirely by deferring address assignment to run time; this is known as zero address arithmetic.


  • https://en.wikipedia.org/wiki/Runtime_library - a set of low-level routines used by a compiler to invoke some of the behaviors of a runtime environment, by inserting calls to the runtime library into compiled executable binary. The runtime environment implements the execution model, built-in functions, and other fundamental behaviors of a programming language. During execution (run time) of that computer program, execution of those calls to the runtime library cause communication between the executable binary and the runtime environment. A runtime library often includes built-in functions for memory management or exception handling. Therefore, a runtime library is always specific to the platform and compiler.



Software

pcc

  • https://en.wikipedia.org/wiki/Portable_C_Compiler - an early compiler for the C programming language written by Stephen C. Johnson of Bell Labs in the mid-1970s, based in part on ideas proposed by Alan Snyder in 1973,[2][3] and "distributed as the C compiler by Bell Labs... with the blessing of Dennis Ritchie."

One of the first compilers that could easily be adapted to output code for different computer architectures, the compiler had a long life span. It debuted in Seventh Edition Unix and shipped with BSD Unix until the release of 4.4BSD in 1994, when it was replaced by the GNU C Compiler. It was very influential in its day, so much so that at the beginning of the 1980s, the majority of C compilers were based on it. Anders Magnusson and Peter A Jonsson restarted development of pcc in 2007, rewriting it extensively to support the C99 standard.

gcc

  • GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Java, Ada, and Go, as well as libraries for these languages (libstdc++, libgcj,...). GCC was originally written as the compiler for the GNU operating system. The GNU system was developed to be 100% free software, free in the sense that it respects the user's freedom.


LLVM

  • LLVM is a collection of modular and reusable compiler and toolchain technologies. Despite its name, LLVM has little to do with traditional virtual machines, though it does provide helpful libraries that can be used to build them. The name "LLVM" itself is not an acronym; it is the full name of the project.
  • Emscripten is an LLVM to JavaScript compiler. It takes LLVM bitcode (which can be generated from C/C++ using Clang, or any other language that can be converted into LLVM bitcode) and compiles that into JavaScript, which can be run on the web (or anywhere else JavaScript can run).

Clang

  • http://en.wikipedia.org/wiki/Clang - compiler front end for the C, C++, Objective-C, Objective-C++, OpenCL and CUDA programming languages. It uses LLVM as its back end and has been part of the LLVM release cycle since LLVM 2.6.

It is designed to offer a complete replacement to the GNU Compiler Collection (GCC). It is open-source,[4] and its contributors include Apple, Microsoft, Google, ARM, Sony, Intel and AMD. Its source code is available under the University of Illinois/NCSA License, a permissive free software licence.

Other

  • Parrot is a virtual machine designed to efficiently compile and execute bytecode for dynamic languages. Parrot currently hosts a variety of language implementations in various stages of completion, including Tcl, Javascript, Ruby, Lua, Scheme, PHP, Python, Perl 6, APL, and a .NET bytecode translator. Parrot is not about parrots, though we are rather fond of them for obvious reasons.







  • https://en.wikipedia.org/wiki/Yacc - a computer program for the Unix operating system. It is a LALR parser generator, generating a parser, the part of a compiler that tries to make syntactic sense of the source code, specifically a LALR parser, based on an analytic grammar written in a notation similar to BNF. Yacc itself used to be available as the default parser generator on most Unix systems, though it has since been supplanted as the default by more recent, largely compatible, programs.
  • XMLVM is to offer a flexible and extensible cross-compiler toolchain. Instead of cross-compiling on a source code level, XMLVM cross-compiles byte code instructions from Sun Microsystem's virtual machine and Microsoft's Common Language Runtime. The benefit of this approach is that byte code instructions are easier to cross-compile and the difficult parsing of a high-level programming language is left to a regular compiler. In XMLVM, byte code-based programs are represented as XML documents. This allows manipulation and translation of XMLVM-based programs using advanced XML technologies such as XSLT, XQuery, and XPath.




  • https://github.com/imatix/gsl GSL/4.1 is a code construction tool. It will generate code in all languages and for all purposes. If this sounds too good to be true, welcome to 1996, when we invented these techniques. Magic is simply technology that is twenty years ahead of its time. In addition to code construction, GSL has been used to generate database schema definitions, user interfaces, reports, system administration tools and much more. [9]



Program synthesis

  • https://en.wikipedia.org/wiki/Program_synthesis - the task to automatically construct a program that satisfies a given high-level specification. In contrast to other automatic programming techniques, the specifications are usually non-algorithmic statements of an appropriate logical calculus. Often, program synthesis employs techniques from formal verification.



Build



  • Start-up Tools - Start-ups are always short on time: here are some tools that can save you time and avoid reinventing the wheel. This list is focused on technical tools to save development time.

GNU toolchain





  • Jobserver Implementation - describes the GNU make “jobserver” implementation: it is meant mainly for people who want to understand the GNU make jobserver, but also for those interesting in a traditionally hairy problem in UNIX programming: how to wait for two different types of events (signals and file descriptors) at the same time. [12]


  • Why Not Make? - "Make is a conceptually simple build-system, and it is packaged with major Linux distributions. However, Make should rarely be your build-system of choice when starting a new C++ project.That’s a bold claim, so here’s why…" [13]



CMake

  • CMake - an open-source, cross-platform family of tools designed to build, test and package software. CMake is used to control the software compilation process using simple platform and compiler independent configuration files, and generate native makefiles and workspaces that can be used in the compiler environment of your choice. The suite of CMake tools were created by Kitware in response to the need for a powerful, cross-platform build environment for open-source projects such as ITK and VTK.



Waf

  • https://waf.io - The Waf framework is somewhat different from traditional build systems in the sense that it does not provide support for a specific language. Rather, the focus is to support the major usecases encountered when working on a software project. As such, it is essentially a library of components that are suitable for use in a build system, with an emphasis on extensibility. Although the default distribution contains various plugins for several programming languages and different tools (c, d, ocaml, java, etc), it is by no means a frozen product. Creating new extensions is both a standard and a recommended practice.

xmake

redo

  • Introduction - the _redo_ build system - a competitor to the long-lived, but sadly imperfect, make program. There are many such competitors, because many people over the years have been dissatisfied with make's limitations. However, of all the replacements I've seen, only redo captures the essential simplicity and flexibility of make, while avoiding its flaws. To my great surprise, it manages to do this while being simultaneously simpler than make, more flexible than make, and more powerful than make.