Acoustics

From Things and Stuff Wiki
Jump to navigation Jump to search


General

a mess, to merge with parts of Music, Speaker


  • https://en.wikipedia.org/wiki/Acoustics - the interdisciplinary science that deals with the study of all mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics is present in almost all aspects of modern society with the most obvious being the audio and noise control industries.


  • https://en.wikipedia.org/wiki/Acoustical_engineering - also known as acoustic engineering) is the branch of engineering dealing with sound and vibration. It includes the application of acoustics, the science of sound and vibration, in technology. Acoustical engineers are typically concerned with the design, analysis and control of sound.One goal of acoustical engineering can be the reduction of unwanted noise, which is referred to as noise control. Unwanted noise can have significant impacts on animal and human health and well-being, reduce attainment by students in schools, and cause hearing loss. Noise control principles are implemented into technology and design in a variety of ways, including control by redesigning sound sources, the design of noise barriers, sound absorbers, suppressors, and buffer zones, and the use of hearing protection (earmuffs or earplugs). It also covers positive uses of sound, from the use of ultrasound in medicine to the programming of digital sound synthesizers, and from designing a concert hall to enhance the sound of an orchestra to specifying a railway station's sound system so announcements are intelligible.


  • https://en.wikipedia.org/wiki/Acoustic_wave - type of longitudinal waves that propagate by means of adiabatic compression and decompression. Longitudinal waves are waves that have the same direction of vibration as their direction of travel. Important quantities for describing acoustic waves are sound pressure, particle velocity, particle displacement and sound intensity. Acoustic waves travel with the speed of sound which depends on the medium they're passing through.



  • https://en.wikipedia.org/wiki/Sound - a vibration that propagates as a typically audible mechanical wave of pressure and displacement, through a medium such as air or water. In physiology and psychology, sound is the reception of such waves and their perception by the brain.



  • https://en.wikipedia.org/wiki/Sound_energy - a form of energy associated with the vibration of matter. The SI unit of sound energy is the joule (J). Sound is a mechanical wave and as such consists physically in oscillatory elastic compression and in oscillatory displacement of a fluid. Therefore, the medium acts as storage for both potential and kinetic energy as well.
  • https://en.wikipedia.org/wiki/Speed_of_sound - the distance travelled per unit time by a sound wave as it propagates through an elastic medium. In dry air at 20 °C (68 °F), the speed of sound is 343.2 metres per second (1,126 ft/s; 1,236 km/h; 768 mph; 667 kn), or a kilometre in 2.914 s or a mile in 4.689 s.


  • https://en.wikipedia.org/wiki/Sound_power - or acoustic power is the rate at which sound energy is emitted, reflected, transmitted or received, per unit time. The SI unit of sound power is the watt (W). It is the power of the sound force on a surface of the medium of propagation of the sound wave. For a sound source, unlike sound pressure, sound power is neither room-dependent nor distance-dependent. Sound pressure is a measurement at a point in space near the source, while the sound power of a source is the total power emitted by that source in all directions. Sound power passing through an area is sometimes called sound flux or acoustic flux through that area.


  • https://en.wikipedia.org/wiki/Sound_intensity - also known as acoustic intensity is defined as the sound power per unit area. The SI unit of sound intensity is the watt per square meter (W/m2). The usual context is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity. Sound intensity is not the same physical quantity as sound pressure. Hearing is directly sensitive to sound pressure which is related to sound intensity. In consumer audio electronics, the level differences are called "intensity" differences, but sound intensity is a specifically defined quantity and cannot be sensed by a simple microphone. Sound energy passing per second through a unit area held perpendicular to the direction of propagation of sound waves is called intensity of sound.


  • https://en.wikipedia.org/wiki/Sound_pressure - or acoustic pressure is the local pressure deviation from the ambient (average, or equilibrium) atmospheric pressure, caused by a sound wave. In air, sound pressure can be measured using a microphone, and in water with a hydrophone. The SI unit of sound pressure is the pascal (Pa).


  • https://en.wikipedia.org/wiki/Decibel - a logarithmic unit used to express the ratio of two values of a physical quantity, often power or intensity. One of these values is often a standard reference value, in which case the decibel is used to express the level of the other value relative to this reference. The number of decibels is ten times the logarithm to base 10 of the ratio of two power quantities, or of the ratio of the squares of two field amplitude quantities.

The decibel is commonly used in acoustics as a unit of sound pressure level. The reference pressure in air is set at the typical threshold of perception of an average human and there are common comparisons used to illustrate different levels of sound pressure.

  • Gain structure: input and output levels - This article describes input and output gain structure of audio devices. Audio components are typically rated by their input sensitivity and/or maximum output voltage. This article explains how to match the output voltage of an audio device to the input voltage range of the next device in the signal chain, and how to adjust input sensitivity to accommodate a variety of voltages from different source devices. dB, dBu, dBV, dBFS, and dB-SPL.


  • https://en.wikipedia.org/wiki/Audio_frequency - AF or audible frequency, is characterized as a periodic vibration whose frequency is audible to the average human. The SI unit of audio frequency is the hertz (Hz). It is the property of sound that most determines pitch. The generally accepted standard range of audible frequencies is 20 to 20,000 Hz, although the range of frequencies individuals hear is greatly influenced by environmental factors. Frequencies below 20 Hz are generally felt rather than heard, assuming the amplitude of the vibration is great enough. Frequencies above 20,000 Hz can sometimes be sensed by young people. High frequencies are the first to be affected by hearing loss due to age and/or prolonged exposure to very loud noises.


See Music






  • https://en.wikipedia.org/wiki/Onset_(audio) - the beginning of a musical note or other sound, in which the amplitude rises from zero to an initial peak. It is related to (but different from) the concept of a transient: all musical notes have an onset, but do not necessarily include an initial transient.
  • https://en.wikipedia.org/wiki/Transient_(acoustics) - a high amplitude, short-duration sound at the beginning of a waveform that occurs in phenomena such as musical sounds, noises or speech. It can sometimes contain a high degree of non-periodic components and a higher magnitude of high frequencies than the harmonic content of that sound. Transients do not necessarily directly depend on the frequency of the tone they initiate. Transients are more difficult to encode with many audio compression algorithms, causing pre-echo.



  • https://en.wikipedia.org/wiki/Acoustic_attenuation - a measure of the energy loss of sound propagation in media. Most media have viscosity, and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity. For inhomogeneous media, besides media viscosity, acoustic scattering is another main reason for removal of acoustic energy. Acoustic attenuation in a lossy medium plays an important role in many scientific researches and engineering fields, such as medical ultrasonography, vibration and noise reduction.


  • https://en.wikipedia.org/wiki/Absorption_(acoustics) - refers to the process by which a material, structure, or object takes in sound energy when sound waves are encountered, as opposed to reflecting the energy. Part of the absorbed energy is transformed into heat and part is transmitted through the absorbing body. The energy transformed into heat is said to have been 'lost'.

When sound from a loudspeaker collides with the walls of a room part of the sound's energy is reflected, part is transmitted, and part is absorbed into the walls. As the waves travel through the wall they deform the material thereof (just like they deformed the air before). This deformation causes mechanical losses via conversion of part of the sound energy into heat, resulting in acoustic attenuation, mostly due to the wall's viscosity. Similar attenuation mechanisms apply for the air and any other medium through which sound travels.

The fraction of sound absorbed is governed by the acoustic impedances of both media and is a function of frequency and the incident angle. Size and shape can influence the sound wave's behavior if they interact with its wavelength, giving rise to wave phenomena such as standing waves and diffraction. Acoustic absorption is of particular interest in soundproofing. Soundproofing aims to absorb as much sound energy (often in particular frequencies) as possible converting it into heat or transmitting it away from a certain location. In general, soft, pliable, or porous materials (like cloths) serve as good acoustic insulators - absorbing most sound, whereas dense, hard, impenetrable materials (such as metals) reflect most.



  • https://en.wikipedia.org/wiki/Acoustic_resonance - a phenomenon where acoustic systems amplify sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies). The term "acoustic resonance" is sometimes used to narrow mechanical resonance to the frequency range of human hearing, but since acoustics is defined in general terms concerning vibrational waves in matter, acoustic resonance can occur at frequencies outside the range of human hearing. An acoustically resonant object usually has more than one resonance frequency, especially at harmonics of the strongest resonance. It will easily vibrate at those frequencies, and vibrate less strongly at other frequencies. It will "pick out" its resonance frequency from a complex excitation, such as an impulse or a wideband noise excitation. In effect, it is filtering out all frequencies other than its resonance. Acoustic resonance is an important consideration for instrument builders, as most acoustic instruments use resonators, such as the strings and body of a violin, the length of tube in a flute, and the shape of a drum membrane. Acoustic resonance is also important for hearing. For example, resonance of a stiff structural element, called the basilar membrane within the cochlea of the inner ear allows hair cells on the membrane to detect sound. (For mammals the membrane has tapering resonances across its length so that high frequencies are concentrated on one end and low frequencies on the other.)


  • https://en.wikipedia.org/wiki/Helmholtz_resonance - or wind throb is the phenomenon of air resonance in a cavity, such as when one blows across the top of an empty bottle. The name comes from a device created in the 1850s by Hermann von Helmholtz, the Helmholtz resonator, which he used to identify the various frequencies or musical pitches present in music and other complex sounds.



  • https://en.wikipedia.org/wiki/Diffusion_(acoustics) - in acoustics and architectural engineering, is the efficacy by which sound energy is spread evenly in a given environment. A perfectly diffusive sound space is one that has certain key acoustic properties which are the same anywhere in the space. A non-diffuse sound space would have considerably different reverberation time as the listener moved around the room. Virtually all spaces are non-diffuse. Spaces which are highly non-diffuse are ones where the acoustic absorption is unevenly distributed around the space, or where two different acoustic volumes are coupled. The diffusiveness of a sound field can be measured by taking reverberation time measurements at a large number of points in the room, then taking the standard deviation on these decay times.[citation needed] Alternately, the spatial distribution of the sound can be examined. Small sound spaces generally have very poor diffusion characteristics at low frequencies due to room modes.


  • https://en.wikipedia.org/wiki/Anechoic_chamber - an-echoic meaning "non-reflective, non-echoing, echo-free", is a room designed to completely absorb reflections of either sound or electromagnetic waves. They are also often isolated from waves entering from their surroundings. This combination means that a person or detector exclusively hears direct sounds (no reverberant sounds), in effect simulating being inside an infinitely large room.




Performing Musician Magazine:







Loudness

  • https://en.wikipedia.org/wiki/Loudness - the subjective perception of sound pressure. More formally, it is defined as, "That attribute of auditory sensation in terms of which sounds can be ordered on a scale extending from quiet to loud." The relation of physical attributes of sound to perceived loudness consists of physical, physiological and psychological components. The study of apparent loudness is included in the topic of psychoacoustics and employs methods of psychophysics.

In different industries, loudness may have different meanings and different measurement standards. Some definitions such as LKFS refer to relative loudness of different segments of electronically reproduced sounds such as for broadcasting and cinema. Others, such as ISO 532A (Stevens loudness, measured in sones), ISO 532B (Zwicker loudness), DIN 45631 and ASA/ANSI S3.4, have a more general scope and are often used to characterize loudness of environmental noise.

Loudness, a subjective measure, often confused with physical measures of sound strength such as sound pressure, sound pressure level (in decibels), sound intensity or sound power. Filters such as A-weighting and ITU-R BS.1770 attempt to compensate measurements to correspond to loudness as perceived by the typical human.


  • https://en.wikipedia.org/wiki/Phon - a unit of loudness level for pure tones. Its purpose is to compensate for the effect of frequency on the perceived loudness of tones. By definition, the number of phon of a sound is the dB SPL of a sound at a frequency of 1 kHz that sounds just as loud. This implies that 0 phon is the limit of perception, and inaudible sounds have negative phon levels. The equal-loudness contours are a way of mapping the dB SPL of a pure tone to the perceived loudness level (LN) in phons. These are now defined in the international standard ISO 226:2003, and the research on which this document is based concluded that earlier Fletcher–Munson curves and Robinson–Dadson curves were in error. The phon unit is not an SI unit in metrology. It is used as a unit of loudness level by the American National Standards Institute.


  • https://en.wikipedia.org/wiki/Equal-loudness_contour - a measure of sound pressure (dB SPL), over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. The unit of measurement for loudness levels is the phon, and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing frequencies are said to have equal-loudness level measured in phons if they are perceived as equally loud by the average young person without significant hearing impairment. Equal-loudness contours are often referred to as "Fletcher-Munson" curves, after the earliest researchers, but those studies have been superseded and incorporated into newer standards. The definitive curves are those defined in the international standard ISO 226:2003, which are based on a review of modern determinations made in various countries.


  • https://en.wikipedia.org/wiki/Fletcher–Munson_curves - ne of many sets of equal-loudness contours for the human ear, determined experimentally by Harvey Fletcher and Wilden A. Munson, and reported in a 1933 paper entitled "Loudness, its definition, measurement and calculation" in the Journal of the Acoustical Society of America.




  • https://en.wikipedia.org/wiki/LKFS - a loudness standard designed to enable normalization of audio levels for delivery of broadcast TV and other video. Loudness units relative to full scale (LUFS) is a synonym for LKFS that was introduced in EBU R128. Loudness units (LU) is an additional unit used in EBU R128. It describes Lk without direct absolute reference and therefore describes loudness level differences. LKFS is standardized in ITU-R BS.1770.
  • YouTube: EBU R128 Introduction - Florian Camerer - an introduction to the European Broadcasting Union's R128 Broadcast Standard and speaks in general about perceived loudness, peak normalization, loudness normalization, etc.


  • https://github.com/dpapavas/alsaloudness - a loudness-compensated volume control for ALSA. It is based on the ISO 226 equal loudness contours, it is fast (thanks to FFTW for the most part) and should be able to run in real time, presenting a very small load to the CPU, even for the embedded systems often used in media player setups.



  • https://en.wikipedia.org/wiki/Sone - a unit of how loud a sound is perceived. The sone scale is linear. Doubling the perceived loudness doubles the sone value. Proposed by Stanley Smith Stevens in 1936, it is a non-SI unit. In acoustics, loudness is the subjective perception of sound pressure. The study of apparent loudness is included in the topic of psychoacoustics and employs methods of psychophysics.


  • https://github.com/jiixyj/loudness-scanner - tool that scans your music files according to the EBU R128 standard for loudness normalisation. It optionally adds ReplayGain compatible tags to the files.All source code is licensed under the MIT license. See LICENSE file for details.Features Supports all libebur128 features: Portable ANSI C code Implements M, S and I modes Implements loudness range measurement (EBU - TECH 3342) True peak scanning Supports all samplerates by recalculation of the filter coefficients ReplayGain compatible tagging support for MP3, OGG, Musepack, FLAC and more


Psychoacoustics

  • https://en.wikipedia.org/wiki/Psychoacoustics - the scientific study of sound perception. More specifically, it is the branch of science studying the psychological and physiological responses associated with sound (including speech and music). It can be further categorized as a branch of psychophysics.


  • https://en.wikipedia.org/wiki/Bark_scale - a psychoacoustical scale proposed by Eberhard Zwicker in 1961. It is named after Heinrich Barkhausen who proposed the first subjective measurements of loudness. One definition of the term is "...a frequency scale on which equal distances correspond with perceptually equal distances. Above about 500 Hz this scale is more or less equal to a logarithmic frequency axis. Below 500 Hz the Bark scale becomes more and more linear." The scale ranges from 1 to 24 and corresponds to the first 24 critical bands of hearing. It is related to, but somewhat less popular than, the mel scale, a perceptual scale of pitches judged by listeners to be equal in distance from one another.




Software

  • I-Simpa: I-Simpa - an open software dedicated to the modelling of sound propagation in 3D complex domains. It is a perfect tool for experts (i.e. acousticians), for teachers and students, as well as for researchers, in their projects (room acoustics, urban acoustics, industrial spaces, acoustic courses...).


Cymatics

Non-Newtonian